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Abstract— In this paper the wavelet expansion method, in
conjunction with the boundary element method (BEM), is applied
for the evaluation of the capacitance and inductance matrices
of multiconductor transmission lines in multilayered dielectric
media. The integral equations obtained by using a Green’s func-
tion above a ground plane are solved by Galerkin’s method,
with the unknown total charge expanded in terms of orthogonal
wavelets in L?([0, 1]). The difficulty of using wavelets on the
real line to expand unknown functions defined in finite intervals
is overcome by the utilization of wavelets in L*([0, 1]). The
adoption of the geometric representation of the BEM converts the
two-dimensional problem into a one-dimensional problem, and
provides a versatile and accurate treatment of curved conductor
surfaces and dielectric interfaces. A sparse matrix equation is
developed from the set of integral equations, which is extremely
valuable, in particular when a large system of equations must be
solved. Finally, we compare our numerical results with previously
published data, and demonstrate good agreement between the
two sets of results.

1. INTRODUCTION

AVELET analysis has drawn a great deal of attention

in both applied mathematics and many engineering dis-
ciplines in recent years. Wavelet techniques have been found
to have two major applications in engineering. As a transform,
the wavelet transform outperforms Fourier analysis since the
wavelet transform preserves information from the signal in the
original spatial domain, which the Fourier transform (series)
does not provide. Moreover, in contrast to the conventional
short-duration Fourier transform that has fixed resolutions in
both time and frequency, the wavelet transform provides a
multiresolution analysis in which multilevel resolutions in both
the time and frequency domains can be attained. The wavelet
transform has become a popular and useful tool in image
analysis and signal processing [1]-[3]. When employed as a
basis set, the cancellation property of the wavelet allows the
generation of sparse matrices, which speeds up the solution of
integral equations. Recently, applications of wavelets as bases
or wavelet-like basis functions are becoming widely used in
the solution of electromagnetic modeling problems [4]-[7].
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Among the various wavelet forms, orthogonal wavelets
appear to be the most useful in numerical analysis [7]. In
[8], orthogonal wavelets on the real line were applied to ex-
pand integral operators and demonstrated remarkable operator
compressions; however, only Calderon—Zygmund type kernels
were investigated. Unfortunately, the integral equations arising
in electromagnetic problems essentially are not members of
this class. Moreover, the work in [8] did not address the
difficulty of using wavelets on the entire real line to expand
the unknown function on a finite portion of the real line. In
[6] wavelets were applied to a real world electromagnetic
modeling problem, in which electromagnetic fields coupled
through a double-slot aperture in a planar conducting screen
separating two identical half-space regions. In this approach
the integral kernel (the second Hankel function H(g2)(27r]:r; -
z'|) of order zero) and the unknown equivalent magnetic
current were expanded in terms of the Battle-Lemarie wavelet
in L*(R). Since this wavelet has infinite support, the wavelet
was truncated at the boundary points. Hence, a nonphysical
solution at the boundary points was produced. As a result,
some undesired oscillations near the boundaries can be ob-
served in the numerical example presented in Fig. 4 of [6]
for the magnitude of the equivalent magnetic current obtained
from the truncated Battle—Lemarie wavelet.

A full wave analysis of microstrip floating line structures
was obtained by using a wavelet expansion method in [7],
where a Sommerfeld-type integral with a much more in-
tractable kernel (the dyadic Green’s functions for the grounded
dielectric slab) was treated by using Daubechies’ wavelet, one
type of orthogonal wavelet with compact support on the real
line. Since the Daubechies’ wavelet has compact support, one
can easily delete the wavelet bases or scaling functions that are
beyond the regions of interest, and thus the truncation of the
wavelet at the boundary points is avoided. As mentioned in [7],
an edge basis is required at cach end of the f{inite intervals to
guarantee the completeness of the basis. The problems treated
in [6]-[8] were essentially in straight line domains. Since most
practical problems exhibit complicated geometries, it is more
desirable to be able to handle curves and surfaces.

Multiple-conductor, multiple-transmission line systems are
commonly found in high-speed, high-density digital electron-
ics, at the levels of individual chip carriers, printed circuit
boards, and more recently, multichip modules (MCM’s). Al-
though previous methods for extraction of the distributed
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circuit parameters including more rigorous theories [9]-[11]
and even full-wave analysis techniques [12], [13], the quasi-
TEM solutions are still widely used in digital design [14]-[18],
since the bandwidths of the digital signals are still below
approximately 10 GHz and the dimensions of the conductors
on typical printed circuit boards are fairly large in comparison
to the skin depth in the metals, although shrinking rapidly [19].

In this paper, we present a new approach for extraction
of the capacitance and inductance matrices of multiconductor
transmission lines in multilayered dielectric media by using
the wavelet expansion method in combination with the BEM.
Almost all the integral paths in this problem are closed or
can properly be mapped into closed grouped contours, as
long as the unknown charge distribution is continuous along
the entire grouped contour, and has the same value at its
two end points. Therefore, it is possible to employ periodic
orthogonal wavelets in L [0, 1] as basis functions to expand
the unknown charge distributions, provided that one can form
proper maps between the integral paths (including both the
closed contours and the grouped contours) and the simplex
interval [0, 1].

The utilization of the wavelet in Lz([O, 11) has two advan-
tages: No truncation of the wavelet is needed at the boundaries,
and the wavelet offers a complete basis in the regions of
interest. In order to treat the curved conductor surfaces or
dielectric interfaces, the geometric representation in the BEM
is incorporated into this analysis. The paper is organized as
follows. In Section II the periodic orthogonal wavelet theory
is reviewed briefly, followed by a brief summary of the integral
equation formulation in Section III. Section IV is dedicated to
the implementation of the wavelet expansion method and the
geometric description using the conventional BEM. Numerical
examples are presented in Section V.

II. ORTHOGONAL WAVELETS IN L*([0, 17)

In this section, several results of wavelet theory relevant
to this work will be reviewed briefly. More comprehensive
discussions of wavelets can be found in monographs and books
(e.g., [20]-{22)).

A natural way to describe wavelets is multiresolution analy-
sis (MRA). A nested sequence of closed subspaces V,,, is said
to generate a multiresolution analysis in L*(R) if it satisfies
the following properties:

- CVoiCVoCViCVaC--- (D

cosp:| |J Vi | =F(R), [ Ve ={1} @
meZ mell
flz) eV, & f(22) € Vip (3)
f(.%‘) ceVoe f(l' — ’I”L) eV @

where m, n € Z and Z denotes the set of integers. Properties
(1) and (2) imply that the projection of a function in a subspace
V., contains more information than its projection in the lower
subspace V,,,_1, and ensure that every function in L?(R) can
be approximated as closely as desired by its projection in V ,,,
which converges to the original function as m approaches oo.

Properties (3) and (4) tell us that the subspaces can be derived
from one another through dilation by a factor of two, and are
invariant under integer translations.

It can be shown that for each such nested subspace sequence
{Vim} ez, there exists a unique function ¢(z) € L*(R),
called the scaling function, such that its dilating and translating
versions

bmn(z) = 2m2H(2™ T — n) (5)

form an orthonormal basis of the closed subspace V, for m,
n € Z. For any function f(z) € L*(R), an approximation can
be obtained by its projection in V,,

F(@) 2 A f(@) = Y Frnbmn(@) 6)

where A,, is the orthogonal projection operator onto V,,,
and f,,, is the inner product of f(x) and ¢ n(z). The
projection A, f(z) is often called an approximation of the
function f(x) at the resolution 2™. The difference of the
information between A, f(z) and A,,_1f(z) is contained
in the orthogonal complement W,,_; of V,,_; in V,,.
The subspaces {Wo,}, . are called wavelet subspaces.
Moreover, it can be shown that there exists a function ¢(z) &€
L*(R), called the “mother wavelet,” such that its dilating and
translating versions

Yo () = 2™/ 20522 — 1) )

form an orthonormal basis of W,. Since V.11 =V, W,
for any m € Z, from (2) it follows that

P w.. = L*(R) ®)
meZ

and thus {¢m n},, .oz is an orthonormal basis of L*(R). By
using this fact, (6) can be written as

F@) = Anf(@) = Ay f @)+ 3 Buf(@)  ©)

m/=my
with

Bm/f(iv) = me’n7¢m’n(x)

where m; < m — 1 and fm’,n is the inner product of f(x)
and 1, n(x). If n1 goes to —oo, the first term becomes zero
in (9) and a “pure” wavelet expansion is rendered.

Given a multiresolution analysis with scaling function ¢(x)
and wavelet /(x) in L*(R), we can construct the wavelet in
L2([0, 1]) [20] by defining

¢ (z) = Y mnlT+F) (10)
kel ’
2 (z) = Ymnlz+k) a1
kel
and VP = clost([O’l}){qﬁf;rf”;l(x) cno€ Z}, WET =

PeET

CZOSLQ([071]){¢m,n($) :n € Z}. It can be sh(.)\x{n that V2=~
are all identical one-dimensional spaces containing only the
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Fig. 1. Configuration of multiconductor transmission line systems in multilayered dielectric media.

constant functions for m < 0, and W27 = {0} for m < —1.
Thus we only need to study VES" and W2 for m > 0.

Moreover, it can easily be verified that
v =V oW (12)

and

U vier | =22(o.1])
mGN

where N is the set of nonnegative integers. Hence, there is a
ladder of multiresolution spaces,

clost (13)

V]07€7‘ C er”' C V]Q)P'I‘ C (14)
with successive orthogonal complements W5, Wi*", Wi*"
-+, and orthonormal bases {¢?5" (2)}n=0, .. 2m_1 in Vpe”
{2t ()} no,...om 1 in WET" for m € N. In patticular.
{ p”} U{yh, :me N, n=0,---, 2™ — 1} constitute an
orthonormal basis in LZ([O. 1]). For simplicity, this basis is
relabeled as follows:

go(z) = b5 (x) =
g1(x) =957 (¢)
g2(z) = 107( )
g3(x) =91 (z) = ga(z — §)
Gom (@) =0 (2)

gorin(x) =900 (2)
:ggm(x —n27™M0<n<2m -1,

(15)

For any f(z) € L2([0, 1]), its approximation at the resolution
2™ can be defined as the projection in VE":

2™ -1

f(@) = Puf(z)= Y fugr(®) (16)
k=0

where P, is the orthogonal projection operator onto V2" and
fx is the inner product of f(z) and gx(z).

II. INTEGRAL EQUATIONS AND FUNCTIONAL FORMULATION

Fig. 1 shows the transmission line system under considera-
tion. An arbitrary number of conductors NV, is embedded in a
dielectric slab, consisting of an arbitrary number of individual
layers INg. A perfectly conducting ground plane extends from
T = —o0 to £ = oo. The system is uniform in the z direction.
The conductors are perfectly lossless and can be of either a
finite cross section or infinitesimally thin.

For the above system, the integral equation formulation was
derived in detail in [15]. For ease of reference, we briefly quote
the major equations here. The integral equations solved for
the unknown total charge distribution o7 (g) can be obtained
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as follows:

1
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ML.
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T 7l

Ve(p) = constant

o,
Il i

(17)
on the conductor-to-dielectric interface, and

O re@
Zeole (7) = ()

1 =4

——— g

27“0;7% T(P)

i-7 -\ .

(=~ o=t =0

on the dielectric-to-dielectric interface, where [, is the contour
of the jth interface above the ground plane, p” is the image
point of ' about the ground plane, and J is the total number
of the interfaces (including conductor-to-dielectric interfaces
and dielectric-to-dielectric interfaces); + denotes the Cauchy
principal value of the integral, and 7(4) is the unit normal
vector at p; The side of the curve [, is referred to as the
“positive” side if 7(p) points outward the curve, while the
other side of the curve is called its “negative” side; ¢*(p)
and €7 () denote the permittivity on the positive and negative
sides, respectively, of the interface toward which 7 approaches.

In order to obtain the capacitance matrix [C], the above
integral equations must first be solved for the total charge
distribution or(g), with V, assigned to be a unity voltage
on each particular conductor surface /;, and assigned to be a
zero voltage on the other conductors. After obtaining the total
charge distribution o7 (p), the free charge distribution o (p)
on the conductors can be evaluated by

(p)

or(5) = “or(p) (19)
for the conductors of finite cross-section, and
7e () == 0L g
+(7) -
Y

= p—p R
(i=fp o) o @

for the infinitesimally thin strips. The total free charge @); (per
unit length in the z direction) on conductor /; corresponding to
this potential distribution yields the element C,, (4, 7 = 1,2,
-+, N,) of the capacitance matrix. The inductance matrix [L]
is related to the vacuum capacitance matrix [C, ] by the simple
formula [L] =eouo[Cy]™t. The vacuum capacitance matrix
[C,] itself is the capacitance matrix of the same conductor
system with all dielectrics replaced by vacuum.
The previous integral equations (17) and (18) need to be
solved numerically for the unknown charge distribution or(p).
The unknown charge distribution on each interface is expanded

in terms of basis functions (described later):

M
or(F) ~ Y gm-1(F)oTm @1)
m=1

where g,_1(p) (m = 1,2, ---, M) are the basis functions,
orm (m = 1,2, , M) are the unknown coefficients to
be determined, and M is the total number of the bases. The
reader should not be confused by the fact that, for simplicity
of notation, the basis function here is denoted by the same
symbol g as the periodized wavelet in the preceding section,
since later we will see that there is an inherent relationship
between them.

Galerkin’s method is used for the testing procedure. Using
(21), a set of linear algebraic equations in matrix form can be
derived from integral (17) and (18) [18]:

[Anm]loTm] = [Bn] (22)
where the elements of the matrices are given as:
J
= Z gn 1
-
2meg Z/ gm-1(0")
32 1
) di } dl (23)
lp —7|
J
B,= ) / Gn-1(P)Ve(P) dI 4)
751

jl=1v"%

for those g,,—1(p) defined on the conductor-to-dielectric inter-
faces, and

Anm=2/

ji=171l1
[,
2eole™ (7) — e (P

()

2) () dl’] i (25)
(26)

for those g,_1(7) defined on the dielectric-to-dielectric inter-
faces.

After Ay (n = 1,2, -, M; m = 1,2, ---, M) and
B, (n = 1,2, , M) are calculated, (22) produces M
simultaneous equations in M unknowns, o1, (m=1,2, -,
M). These simultaneous equations can then be solved for o7,
(m = 1,2, ---, M) in terms of the potential V.(g) on the
conductors.
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Fig. 2. Mapping between the contour of a conductor with finite cross-section and interval [0, 1].

1IV. THE WAVELET EXPANSION AND
THE BOUNDARY ELEMENT METHOD

So far we have not defined the forms of the basis functions,
nor have we described how to handle the interfaces, which
may be arbitrary surfaces (curves). In other words, the repre-
sentations of sources and boundary surfaces (curves) have still
not been specified. The orthogonal wavelets in L2310, 17) and
the boundary element method (BEM) [18], [24] are utilized
for these purposes.

A. Geometrical Representation

Before considering the details of this problem, we will
assume that all contours {I;} are closed for the purpose of
expressing the unknown charge distribution. Roughly speak-
ing, there are four types of contours: (a) the contour of the
conductor with finite cross section; (b) the contour along
the infinitesimally thin metal strip; (c) the contour along the
dielectric-to-dielectric interface from —oo to +o00; and (d) the
contour along the dielectric-to-dielectric interface from —oo
to +o0, with some spaces of discontinuity wherever there is
a conductor along the interface.

We examine the four types of contours one by one. In the
first place, all the contours except type (d) are geometrically
continuous. Moreover, the contour of type (a) is closed ge-
ometrically. The contour of type (b) can be considered as
closed since the charge distribution has the same behavior
(singularity) at its two edge points. Similarly, the contour of
type (c) can also be viewed as closed, due to the fact that no
charge exists at infinity, and thus the charge distribution gives
the same value (zero!) at its two ends (—oo and +00).

For the contour of type (d), the contour intersects the
conductor at a pair of points if the conductor is lying along
the contour and creating a discontinuity space for the contour.
Generally, the charge distribution gives the same behavior
at the two intersection points. If we imagine connecting

each of the intervals of this contour, which are separated
by the discontinuity space created by the conductors, into a
continuous, grouped contour through the pairs of intersection
points, the charge distribution can be considered as continuous
along the continuous, grouped contour. Therefore, the contour
of type d) can also be considered closed as far as the charge
distribution is concerned.

Since the periodized wavelets are defined in Lz([O, 1]), one
would like to map each of the contours {/;} into the interval
[0, 1]. For an arbitrary contour [;, we take two steps:

1) Use the conventional boundary element method to dis-
cretize the contour into a series of boundary elements,
and then map each of the boundary elements into one-
dimensional standard elements through the shape func-
tions or interpolation functions [18], [24];

2) Map the standard elements into corresponding portions
of interval [0, 1]. A linear map is good enough for this
step.

Fig. 2 gives a diagrammatic illustration of the procedures
described above for the contour of a conductor with finite
cross-section.

This procedure can be precisely formulated in mathematical
language as well. In step 1), the global coordinates g are
expressed in terms of the local coordinate £ of a standard
element [18]:

S

e

Ni(§)pi = 2a(8)

p= @7

i

!l

where M, is the number of the interpolation nodes in the local
standard element, IV;(¢) is the shape function referred to node 4
of the local standard element, and p; are the global coordinates
of node ¢ of the actual element. The shape functions {N;(€)}
are given in standard finite element or boundary element books
and literatures (e.g., [18], [24]).



WANG et al.: A HYBRID WAVELET EXPANSION AND BOUNDARY ELEMENT ANALYSIS 669

Inspecting (27), it can be concluded that (27) maps the
standard element in local coordinates into the actual element,
which may have a quite arbitrary or distorted shape, in global
coordinates. The node p, in the actual element corresponds
to the node ¢ in the standard element (by definition, V;() is
assumed to be a unity value at node 7 and zero at all other
nodes of the element).

In step 2, the standard elements corresponding to the actual
elements from contour [, are mapped into the subintervals
[Co, C11. [C1s C2ls -+ [Cx, -1, Cx,] of interval [0, 1], where
K is the number of the elements from contour /; and 0 =
(o< <(< - <(k, = 1 (for instance, one can simply
assume Cr = k/K;, k=1, ---, K, — 1). The map between
the local coordinate ¢ in interval [0, 1] and the local coordinate
€ in the kth standard element of contour /; can be written as

C=Cro1+ (G — Ce1) - € (28)
or
(=Gt
&= Ce — Cr—1 9)

where k = 1,2, -+, K;. Combining (27) and (29), we obtain a
map between the global coordinates 5 and the local coordinate
¢ in interval [0, 1]:

L C—Cr—1 ) _
r= Ql(Ck - Ck—1> = ().

The maps (27)—(30) establish the conversions among the local
coordinate £, the local coordinate ¢ and the global coordinates

-

78

(30

B. Source Representation

Now we can define the basis functions {g,,_1(g)}. For
simplicity and generality, the basis functions will not directly
be defined over all the contours in terms of a set of global
coordinates, but rather over interval [0, 1], since each of
the contours can be related to interval [0, 1] through the
map described by (30). By using the conversion between
the global coordinates 7 and the local coordinate ¢ for each
individual contour, we can easily obtain the basis functions
of the individual contour in the set of global coordinates. For
the unknown charge distribution along contour /;, expansion
(21) can now accurately be written as the projection in VI7"
(about ():

M,

07(9) = Py or(7) = Y gm-1[Q3 " (M)]orm

m=1

€29)

where €25 ! denotes the inverse map of 5, gm—1(C) represents
the orthogonal wavelets in L*([0, 1]), and M, = 2 ™ is the
number of the wavelet bases used for expressing the unknown
charge distribution on contour ,. Because ;> maps contour
1, into interval [0, 1], the basis functions {gm—1[25* ()]} are
well-defined.

It can be shown that, if o7 is smooth function with a
finite number of discontinuities, the error between or(¢) and
P, or(¢) is bounded as follows [22]:

lloz(¢) = Pm,or(Q)l| < C27™° (32)

where C and s are some positive constants, respectively, re-
lating to ||o7(¢)|| and the smoothness of o7 (). The function
ar(¢) with higher order (piecewise) continuity has larger s
value and thus faster error decay. Moreover, the approximation
error of expansion (31) can be estimated as

llor(5) = Pmnor(9)|
< Cyllor(¢) = Ponyor ()]

SO0 27mHse (33)

where Cy is the tight upper bound of the Jacobian of the
transformation Q5 (¢). That is, the approximation error of (31)
has exponential decay with respect to the resolution level my,.

C. Marrix Equation

Based on the above source expansion, a set of linear
algebraic equations can be obtained from integral equation
(17) and (18) by using Galerkin's method. Its matrix form is
described by (22), if the elements of the matrices are computed
by replacing {gm_1(7)} with {gm_1[Q5 (7]} in (23)-(26),
namely,

J
Anm = Z /llgn—l[ﬂgl(ﬁ)]

J1=1"4
Ly~ [ gmerlo @)
2meo o= s
- In (%) dl'| dl (34)
J
Ba= Y. [ a0 @M@ 69

g1=1"11

for those g,,—1[Q5 ()] defined on the conductor-to-dielectric
interfaces, and

J
Apm = ]1221 /l;l gn——l{QZ—I(ﬁ)]
+ o
(e (1957
J

+5re S omealr ()

(=t ) o] e
B, =0 37)

for those g,—1[€%*(7)] defined on the dielectric-to-dielectric
interfaces.

D. Evaluation of Integrals

In practice, integrals in (34)—(36) can be evaluated numeri-
cally in either the { domain or the £ domain. We choose the ¢
domain for our numerical computations as in the conventional
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boundary element analysis. Without loss of generality, let us
consider the following integral:

le(f70)=/gm—l[Qz_l(ﬁ)]R(ﬁoaﬁ)dL

L

(38)

Note that the integrals in (34)—(36) either are or consist of
the above one-dimensional integral with a particular form of
the kernel function R(d, 7). Using the maps (30), (27), and
(28), we have

b=K,
T, (Po) = Z / Im—1[Cr-1
k=1 0

+ (G — Cr—1) - €]

“ R[po, u(8)]|1 D] d¢ (39

where | D] is the Jacobian of the transformation between the
global coordinates g and the local coordinate & of the kth
standard element of contour [;.

The Jacobian that defines the map of (27) can be obtained
from the expression for the differential length

dl = \/(dx)? + (dy)?
@ @]«

The Jacobian is then calculated from the following equation:

(40)

|D| = (Dx)z +(Dy)2 41)

g2 — |

—_
o
T

L i
05 - .
$io(¢) o

-0.5

a7 (€)

5
4
3
2 f— —
1
0
-1

-
9+ U .
3+ _

-4 —

5 i 1 L L
0 0.2 04 0.6 0.8 1

(d)

5 on the real line. (@) g1 () (Y55 (2)); (b) go(z) (wpeor(x)),

where

z, (42)

w_—

yi (43)

Dy = (l

where z, and y, are, respectively, the 2 and y components
of p;.

After computing the orthogonal wavelet on the real line by
using the algorithms provided in the wavelet literature (e.g.,
[20], [21]), one can use definitions (10), (11), and (15) to
obtain the periodic orthogonal wavelet {g,,,_1(¢)}. Integration
(39) is readily performed by standard numerical algorithms
such as Gaussian quadratures [27].

V. NUMERICAL EXAMPLES

Based on the technique proposed in the preceding sections,
a program has been designed to compute the capacitance
and inductance matrices of multiconductor transmission lines
in multilayered dielectrics. Several numerical examples are
presented in this section. In contrast to the use of wavelets
on the real line to solve problems with finite intervals (where
improper selection of the wavelets may result in nonphysical
solutions), any type of wavelets on the real line can be used for
the construction of the wavelets in L*([0, 1]) aithough there
may be some discrepancies in their smoothness. However,
since the derivatives of the unknown function op(p) are
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Fig. 4. Single infinitesimally thin microstrip line.

TABLE I
CHARACTERISTIC IMPEDANCES FOR THE THIN MICROSTRIP LINE
W/H A B BEM MOM Hammerstad
0.4 90.5779 91.3783 90.7758 92,2785 90.3339
0.7 72.9504 73.2748 73.0898 73.9626 72,7516
1.0 62.0383 62.3342 62.1102 62.8109 61.8397
2.0 42.4233 42.5918 424118 42.9980 42.2600
. 4.0 26.5482 26.6498 26.5236 26.9709 26.4593
10. 12,7707 12.8134 12.7351 12,9961 12.7198
TABLE 11
CAPACITANCE AND INDUCTANCE FOR THE CONFIGURATION OF FIG. 6
This work BEM MOM Analytical Units
C 169.9379  169.9840  153.1754  170.1889 pF/m
L 353.0701 3529743  391.7078  352.5494 nH/m

of order zero in the integral equations under consideration,
a set of basis functions with C° continuity is sufficient to
yield a convergent solution. In the following calculations, the
Daubechies’ wavelets (one type of orthogonal wavelets with
compact support on the real line [20], [23]) are employed
to construct the orthogonal wavelets in LQ([O, 1]}. Fig. 3
depicts the periodized orthogonal wavelet constructed from
the Daubechies’ wavelet with N =5 .

Example 1—Thin microstrip line: An infinitesimally thin
microstrip line, as illustrated in Fig. 4, was studied in this
example. The characteristic impedances obtained by this
technique were compared with those from the conventional
boundary element method (BEM) [18], the method of moments
(MOM) [15], and the more accurate formulas from [25] in
Table 1. The results of the conventional BEM were obtained
by using sixteen subsections (33 bases) on the strip and thirty
subsections (62 bases) at the dielectric interface, and those
of the MOM were obtained by using twelve subsections on
the strip and thirty subsections at the dielectric interface.
Two sets of the results from this technique are presented in
Columns A and B, with M; = M, = 32 and M; = My = 16,
respectively, where M; is the number of the wavelet bases
used on the strip, while My is the number at the dielectric
interface.

Table 1 reveals an interesting insight to the wavelet expan-
sions. Using the column labeled “Hammerstad” as a set of
“ground truth” or standard references, the results from this

technique with 64 bases (column A) give approximately the
same accuracy as the conventional BEM, although the BEM
results are obtained by using about 50% more (total 95) bases.
The results from this technique with 32 bases (column B)
exhibit better accuracy than the MOM even if the MOM
uses approximately one third more (total 42) bases for its
calculations. Finally, the comparison between the results of
column A and column B shows that this technique with higher
resolution approximation gives better accuracy.

Theoretically, it is not a surprise that the wavelet expansions
converge faster, i.e., fewer coefficients are needed to represent
a given function than other expansions, since this is a well
known result from wavelet theory and has been extensively
studied [21]-[23], [26]. One of the most attractive features
of wavelets is that they give completely local information
on the functions analyzed. It can be shown that, if the
smoothness of a function is not everywhere the same (for
instance, smooth functions with discontinuities), there is an
optimal way to approximate the function using low resolution
wavelets everywhere and adding high resolution wavelets near
the singularities [22].

Since this technique is a wavelet-base method, as was
expected, the matrix [A] from this technique is sparse. Fig. 5
shows the matrices generated by this technique with 64 bases
and the boundary element method with 95 bases, for the case of
W/H = 0.4. It is quite apparent that the matrix {A] from this
technique is smaller and more sparse than that from the BEM,
as illustrated in Fig. 5. The reason of having smaller matrix
[A] for this technique is because less bases are required for this
technique than the BEM. It can be observed from Fig. 5 that, if
a threshold of 1072 is set, the matrix from this technique gives
a quite sparse matrix since only a few of its entries are above
the threshold 1072, while the matrix from the BEM turns out
a full matrix. The advantage of having a sparse matrix over a
full matrix is important, since sparse matrix solvers (e.g., see
[27]) are much faster and need much smaller storage space
than general matrix solvers. This advantage becomes more
profound as a large matrix system is involved.

Interestingly, if a threshold of 10=2 is set, the sparsity can
also be observed at the lower part (rows 34 to 95) of matrix [A]
from the BEM in Fig. 5(b). The lower part (rows 34 to 95) is
generated by (18) (on the dielectric-to-dielectric interface). In
fact, due to the prevailing contribution from its first term, the
integral (18) is likely to yield sparse linear algebraic equations
for subsectional basis methods (e.g., finite element method,
boundary element method, moment method with subsection
basis), which is usually a behavior of differential equations.
Thus (18) does not take full advantage of the wavelet-base
method as far as the sparsity issue is concerned, although there
still may be some improvement to the sparsity in the lower part
of matrix [A] when this technique is compared with the BEM.

Example 2—Wire above ground plane problem: For curved
surfaces, the BEM is more versatile and accurate than the
MOM of [15], since the BEM matches the curved surfaces
much better [18]. To demonstrate that this technique preserves
the merit of the conventional BEM as well, the comparison
of the results from this technique, the conventional BEM, the
MOM and the analytical method for the wire-above-ground-
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MATRIX [A] FROM THIS TECHNIQUE
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Fig. 5. 3-D logarithmic plots of the magnitudes of the entries in matrix [A]
for the case of W/H = 0.4 in example 1. (a) By this technique. (b) By the
conventional boundary element method.

plane problem (see Fig. 6) is illustrated in Table II. The results
of the conventional BEM, the MOM, and the analytical method
are quoted from [18]. Both the BEM and MOM solutions were
obtained by subdividing the circular cross section conductor
into four subsections, as did the solution based upon this
technique. Four wavelet bases are used along the contour of
the conductor for the solution employing this technique, versus
eight bases used for the conventional BEM.

Example 3—Multiconductor transmission line system with a
thick substrate: This problem arises during the modeling of
CMOS chips, where the transmission lines are far above the
ground plane in comparison to the cross-sectional dimensions
or the separations of the individual conductors. For such
structures, the MOM approach frequently yields either singular
matrices or nonphysical solutions [18]. In order to test the
stability of this technique, we applied it to a ten conductor
transmission line with a thick substrate, as depicted in Fig. 7.
Table I1I lists the resulting capacitance and inductance matrices
computed by this technique and the BEM with special edge
treatment [18]. The BEM solutions were computed by using
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Fig. 6. Circular wire above ground plane.
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Fig. 7. Ten-conductor transmission line system above
substrate.

a thick dielectric
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Fig. 8. Sparsity structure in the upper part of matrix [A4] in Example 3,
which is generated by (17) from the technique described in this paper.

160 subsections (360 bases) on the conductor surfaces and
190 subsections (392 bases) at the dielectric interfaces, and
are quoted from [18]. The results from this technique were
obtained by using 160 bases on the conductor surfaces and 256
bases at the dielectric interfaces. The self-capacitance of the
sth conductor can be obtained by summing up all the elements
at the sth row of the capacitance matrix [C']. Each of the self-
capacitance values should be positive; otherwise, the results
must be nonphysical solutions.
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TABLE III
CAPACITANCE AND INDUCTANCE MATRICES FOR THE - CONFIGURATION OF FiG. 7
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A. This Technique:

Capacitance matrix [C] (Unit: pF/m)

3074 —41.10 —11.35 —6.330 —5.452 —219.6 —4.932 —1.389 —.8246 —.7600
—41.12 319.7 —27.96 —7.812 —5.043 —4.999 —217.5 —3.485 —.9775 —.6821
—11.35 —27.96 309.9 —24.24 —8.632 —1.377 —3.474 —218.4 —3,103 —1.154
—6.316 —7.794 —24.23 302.3 —24.70 —.8192 —.9580 —3.117 —218.9 —3.304
~35.440 —5.029 —8.624 —24.74 290.2 —.7487 —.6584 —1.136 —3.259 —221.5
-218.8 —5.019 —1.373 —.8105 —.7303 231.7 —2.063 —.3899 —.1799 —.1349
—4.967 —216.6 —3.492 —.9523 —.6406 —2.064 231.6 —1.176 —.2495 —.1332
—1.386 —3.526 —217.3 —3.150 —1.127 —.3896 —1.178 230.6 —.8550 —.2383
—.8200 —.9843 —3.162 —217.6 —3.306 —.1803 —.2511 —.8580 229.6 —.7478
—.7467 —.6755 —1.154 —3.343 —220.5 —.1358 —.1351 —.2399 —.7465 230.4

Inductance matrix [L] (Unit: nH/m)

1407. 999.8 831.9 721.3 638.0 1306. 998.7 831.8 721.4 638.1
999.8 1405. 935.1 774.8 671.7 998.7 1304. 934.7 774.8 671.8
831.9 935.1 1407. 888.0 731.7 831.8 934.7 1307. 887.7 731.8
721.3 774.8 888.0 1409. 850.2 721.4 774.8 887.7 1309. 850.1
638.0 671.7 731.7 850.2 1411. 638.1 671.8 731.8 850.1 1310.
1306. 998.7 831.8 721.4 638.1 1407. 1000. 832.1 721.6 638.3
998.7 1304. 934.7 774.8 671.7 1000. 1405. 935.4 775.1 671.9
831.8 934.7 1307. 887.7 731.8 832.1 935.4 1408. 888.2 732.0
721.4 774.8 887.7 1309. 850.1 721.6 775.1 888.2 1410. 850.5
638.1 671.8 731.8 850.1 1310. 638.3 671.9 732.0 850.5 1411.

B. BEM Solution:

Capacitance matrix [C] (Unit: pF/m)

308.5 —41.50 —11.42 —6.335 —5.417 —219.6 —5.019 —1.402 —.8288 —.7474
—41.51321.2 —28.25 —7.853 —5.038 —5.081 —217.8 —3.577 —.9985 —.6799
—11.43 —28.25 312.0 —24.48 —8.665 —1.384 —3.539 —219.2 —3.214 —1.164
—6.339 —7.854 —24.47 304.9 —24.93 —.8126 —.9598 —3.198 —220.3 —3.382
—5.417 —5.036 —8.660 —24.92 291.8 —.7275 —.6423 —1.137 —3.360 —222.1
—220.3 —-5.073 —1.380 —.8094 —.7240 233.4 —2.090 —.3937 —.1811 —.1332
—5.019 —218.7 —3.542 —.9590 —.6409 —2.091 233.9 —1.201 —.2544 —.1336
—1.403 —3.580 —220.2 —3.200 —1.137 —.3943 —1.201 233.7 —.8819 —.2420
—.8282 —.9984 —3.216 —221.3 —3.363 —.1814 —.2545 —.8820 233.5 —.7688
—.7448 —.6777 —1.162 —3.377 —222.9 —.1333 —.1335 —.2417 —.7683 233.0

Inductance matrix [L] (Unit: nH/m)

1398. 993.1 826.2 716.5 633.7 1297. 992.1 826.2 716.6 633.8
993.0 1396. 928.8 769.5 667.1 992.1 1295. 928.4 769.6 667.2
826.2 928.9 1398. 881.9 726.7 826.2 928.4 1298. 881.8 726.8
716.5 769.6 882.0 1400. 844.5 716.6 769.7 881.8 1300. 844.4
633.7 667.1 726.8 844.5 1402. 633.9 667.3 726.9 844.4 1301.
1297, 992.0 826.2 716.5 633.8 1398. 993.4 826.6 716.8 634.0
992.0 1295. 928.4 769.6 667.2 993.4 1396. 929.1 769.9 667.4
826.2 928.4 1298. 881.7 726.8 826.6 929.2 1399. 882.3 727.1
716.6 769.6 881.7 1299. 844.3 716.8 769.9 §882.3 1401. 844.8
633.8 667.2 726.8 844.4 1301. 634.0 667.5 727.1 844.8 1402,

The sizes of matrix [ A] are, respectively, 752 x 752 and 416
x 416 for the BEM and this technique. For such a relatively
large matrix [A], the sparsity is more significant. As mentioned
in Example 1, (18) is likely to produce sparse linear algebraic
equations for both the wavelet-base approach and the BEM.
Hence, we will only examine the sparsity for the upper part
of matrix [A], which comes from (17). Fig. 8 shows the upper
part of matrix [A] obtained by using this technique under a
threshold of 10~3, which is a 160 x 416 sparse matrix, in
sharp contrast to a 360 x 752 full dense matrix generated by
the BEM under the same threshold.

VI. CONCLUSION

In this paper, a hybrid wavelet expansion and boundary
clement technique was introduced to investigate multiconduc-
tor transmission line systems in multilayered dielectric media.
The set of integral equations under consideration is solved by
Galerkin’s method, with the unknown total charge expanded in
terms of orthogonal wavelets in L0, 13). To treat the curved
surfaces, the geometric representation in the boundary element
method has been incorporated into this analysis. It has been
demonstrated that this technique exhibits the advantages of
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both the wavelet expansion method and the boundary element
method. That is, this technique possesses the properties of
rapid convergence, a sparse matrix system and the ability to
model curved surfaces accurately.
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